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where Ci ;, ir, l, and p are, respectively elastic stiffness 
constant, pulse repetition frequency, length, and den­
sity; zero subscripts are, again, for 1 bar values. The 
parameters were computed at pressure intervals of 
0.267 kbar; the volume compressibility, {3v, and the 
linear compressibilities, {311 and {31, were assumed in­
variant within these pressure intervals. 

RESULTS 

Single-Crystal Data 

Figure 2 shows the plots of Ci j versus pressure. The 
relationships are linear within the experimental error. 
The values of the pressure derivatives dCii/ dP shown 
in parentheses were calculated from the least-squares 
analysis of the data. It should be noted that dC«/ dP 
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FIG. 1. Frequency ratio versus pressure for-the - five modes 
of wave propagation (see Table I for explanation of the 
modes) . 

is negative (-0.22) and that dC66/ dP is remarkably 
small (0.26) compared to the pressure derivatives of 
C66 in other hcp metals. 

The adiabatic values for {3[[, {3J., and {3. at various 
pressures were derived from the Ci j values. The iso­
thermal values were obtained from the adiabatic- iso­
thermal relationship. (3T={3. (l+a-yT) , where a, -y, and 
T, respectively, are the volumetric coefficient of themlal 
expansion, average Gruneisen parameter, and temper­
ature. The values of a=1.733X1Q-5/deg and -y=1.01 
were used in these computations.4 

The isothermal compressibility values versus pres­
sure are shown in Fig. 3. The initial pressure deriva­
tives of the isothermal compressibilities are: 

d{3[I / dP= -1.9/ (Mbar)2, 

d{3J./ dP= -1.3/ (Mbar)2, 
and 

d{3./ dP= -4.4/ (Mbar) 2. 
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FIG. 2. Ci; versus pressure. The dCi;/ dP values are shown in 
paren theses. 
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FIG. 3. Isothermal compressibilities versus pressure. 
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TABLE III. Isotropic elastic parameters of zirconium and their pressure derivatives. 

Elaslic parameter, X Value (dX/dP) 

Adiabatic bulk modulus, K. 
Shear modulus, JIoH 

Compressional-wave velocity, v" 
Shear-wave velocity, v. 
Poisson's ratio, CT, 

Density, p 

953.1 kbar 
361.3 kbar 

4.697 km/sec 
2.357 km/sec 
0 .3317 
6.505g/ cm3 

4.08 
0 .02 
4.23 X 10-a km/sec/kbar 

-l.27XlO-· km/sec/kbar 
6 .2X IQ-4/kbar 
6 .8XIQ-a g/cm3/kbar 

Pressure Dependence of Isotropic Elastic Parameters 

The isotropic elastic moduli for zirconium were com­
puted from the Voight-Reuss- HillI4 approximation. 
The values of the various isotropic elastic parameters at 
ambient conditions and their initial pressure deriva­
tives are given in Table III. The pressure dependence 
of the bulk. modulus K, shear modulus }J., Poisson's 
ration u, and density p are shown in Fig. 4. The change 
with pressure of the shear modulus is irregular. The 
value of d}J./dP is small but, in general, positive (0.06) 
to about 3 kbar and it becomes negative at higher 
pressures. It should be noted that this unusual phe­
nomenon may be related to the pressure-induced phase 
change at ,...,60 kbar.9 

DISCUSSION 

Calculation of Intrinsic Temperature 
Coefficients of the Cij 

The pressure coefficients of the Cij are related to the 
temperature derivatives through the following variation 
of Eq. (1) 

Cirl(dCii/dT) = Cirl(aCii/aT) v 

- (av/{3vCij) (aCi;/aPh, (3) 

where the first term on the right side of the equation 
represents the intrinsic temperature dependence of the 
elastic modulus, and the second term is the temper­
ature dependence caused by volume change (thermal 
expansion). For a quasiharmonic solid the lattice fre­
quencies are not an intrinsic function of temperature 
and dCii/ dT is dependent only on volume. In real 
solids the vibrational energy will vary with applied 
stress and the change with temperature of this effect 
contributes to the intrinsic term, along with possible 
intrinsic effects of electron excitation. In those fcc 
metals where (aCi;/aph has been measured the 
volume change effect generally accounts for at least 
1 of the total temperature coefficient.15 

The two unusual features in the observed temper­
ature dependence of the elastic moduli of Zr are men­
tioned in the introduction to this paper. The total 

temperature coefficients for Zr, at 298°K, the calculated 
volume dependent terms, and the intrinsic terms that 
remain are listed in Table IV. It is clear that dC66/dT 
and dC44/ dT at 298°K are derived almost completely 
from the intrinsic contribution and only about t of 
dCn / dT is due to the volume change during thermal 
expansion. In contrast, about 86% of dK./dT is de­
rived from the volume change. 

The very evident changes2 in the total temperature 
derivatives of the elastic moduli at temperatures above 
4000 K could, however, be a consequence of the in-
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FIG. 4. Isotropic bulk and shear moduli, Poisson's ratio and 
density versus pressure. 


